One-dimensional, nonlinear determinism characterizes heart rate pattern during paced respiration.

نویسندگان

  • Katrin Suder
  • Friedhelm R Drepper
  • Michael Schiek
  • Hans-Henning Abel
چکیده

This study focuses on the dynamic pattern of heart rate variability in the frequency range of respiration, the so-called respiratory sinus arrhythmia. Forty experimental time series of heart rate data from four healthy adult volunteers undergoing a paced respiration protocol were used as an empirical basis. For pacing-cycle lengths >8 s, the heartbeat intervals are shown to obey a rule that can be expressed by a one-dimensional circle map (next-angle map). Circle maps are introduced as a new type of model for time series analyses to characterize the nonlinear dynamic pattern underlying the respiratory sinus arrhythmia during voluntary paced respiration. Although these maps are not chaotic, the dynamic pattern shows typical imprints of nonlinearity. By starting from a piecewise linear model, which describes the different circle maps obtained from the empirical time series for various pacing frequencies, time invariant measures can be introduced that characterize the dynamic pattern of heart rate variability during voluntary slow-paced respiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heart rate variability as determinism with jump stochastic parameters.

We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which c...

متن کامل

Synchronization between main rhythmic processes in the human cardiovascular system.

For the cases of spontaneous respiration and paced respiration with a fixed frequency and linearly increasing frequency, we investigate synchronization between three main rhythmic processes governing the cardiovascular dynamics in humans, namely, the main heart rhythm, respiration, and the process whose fundamental frequency is close to 0.1 Hz. The analysis of the experimental records reveals s...

متن کامل

Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans.

Respiratory sinus arrhythmia (RSA) may be associated with improved efficiency of pulmonary gas exchange by matching ventilation to perfusion within each respiratory cycle. Respiration rate, tidal volume, minute ventilation (.VE), exhaled carbon dioxide (.VCO(2)), oxygen consumption (.VO(2)), and heart rate were measured in 10 healthy human volunteers during paced breathing to test the hypothesi...

متن کامل

Regions of cardiorespiratory synchronization in humans under paced respiration.

Cardiorespiratory synchronization under paced respiration is studied systematically as the respiration frequency is changed between 3 and 30 breaths per min. We plot a one-dimensional cut of the classical picture of synchronization regions along the line defining the current breathing amplitude. The existence of n:m synchronization regions of finite width is demonstrated for each of six subject...

متن کامل

Vasomotor instability preceding tilt-induced syncope: does respiration play a role?

This study aimed to determine whether alterations in cardiovascular dynamics before syncope are related to changes in spontaneous respiration. Fifty-two healthy subjects underwent continuous heart rate (HR), arterial blood pressure (BP), and respiratory measurements during 10-min periods of spontaneous and paced breathing (0.25 Hz) in the supine and 60 degrees head-up tilt positions. Data were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 275 3  شماره 

صفحات  -

تاریخ انتشار 1998